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MRI Angiography Problem (Sketch)

22 radial lines

• ≈ 4% coverage for 512 by 512 image (96% missing)

• ≈ 2% coverage for 1024 by 1024 image (98% missing)
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Classical Reconstruction
Backprojection: essentially reconstruct g∗ with

ĝ∗(ω) =

f̂(ω) ω ∈ Ω

0 ω 6∈ Ω
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Interpolation?
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Undersample Nyquist by 25 or 50 at high frequencies!



5

Naive Reconstruction
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‖g‖T V =
∑
t1,t2

|Dg(t1, t2)|

Dg(t1, t2) =

g(t1 + 1, t2) − g(t1, t2)

g(t1, t2 + 1) − g(t1, t2)
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Total Variation Reconstruction
Reconstruct g∗ with

min
g

‖g‖T V s.t. ĝ(ω) = f̂(ω), ω ∈ Ω

Original Phantom (Logan−Shepp)
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original g∗ = original — perfect reconstruction!
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Agenda: Reconstruction of signals from undersampled data

• A New Nonlinear Sampling theory

• Compressive sampling

• Robustness

• Numerical evidence

• Implications and opportunities
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Areas of Preoccupation
Wish to recover a digital signal (vector) x(t) ∈ RN from undersampled data:

yk = 〈x, φk〉, k = 1, . . . ,K, y = Φx

Example

• x: 1D signal

• measure Fourier coefficients of x

yk = x̂(ωk) =
1

√
N

N−1∑
t=0

x(t)e−i2πωkt/N

• vastly undersampled data
K � N

Nyquist says this is impossible: the number of Fourier samples we need to
acquire must match the desired resolution N .
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Sparse Spike Train

Sparse sequence of |T | spikes Observe |Ω| Fourier coefficients
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`1 Reconstruction
Reconstruct by solving

min
s

‖s‖`1 :=
∑

t

|s(t)| s.t. Φs = y

ŝ(ωk) = yk

original recovered from 30 Fourier samples
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Min `1: Equivalent Formulation

min
s

‖s‖`1 :=
∑

t

|s(t)| subject to Φs = y

Reformulation as a linear program (LP)

min
∑

t

u(t) s.t. − u(t) ≤ s(t) ≤ u(t), Φs = y

with variables u, s ∈ RN .
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A Nonlinear Sampling Result

• x supported on set of size B

• K frequencies selected at random

K & B logN.

Minimizing `1 reconstructs exactly with overwhelming probability.

• We do not need more samples

• We can’t do with fewer samples

• In practice, works for most with about |Ω| = 2|T | samples.

• Hard analysis

• Many extensions: higher dimensions, piecewise constant signals, etc. E.g.
for 2D TV, the gradient is sparse

K & #Jumps · logN.
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Nonlinear Sampling Theorem

• Switch roles of time and frequency:

– x̂ supported on set Ω in freq domain

– Sample on set T in time domain

• Nonlinear sampling theorem:

– Ω is an arbitrary set of size B

– We can reconstruct from ∼ B logN randomly placed samples

– Nonlinear reconstruction by convex programming

• Partial conclusions

– Nyquist is irrelevant

– Nonlinear sampling theory based on structural content of the signal
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Extensions
• B number of jump discontinuities (TV reconstruction)

• B number of 2D, 3D spikes.

• B number of 2D jump discontinuities (2D TV reconstruction)

E.g. for 2D TV, the gradient is sparse and if

K & #B · logN,

the min-TV is exact with high probability.
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Numerical Results

• Signal length N = 1024

• Randomly place |T | spikes, observe K random frequencies

• Measure % recovered perfectly

• white = always recovered, black = never recovered
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Previous Work

• `1 reconstruction in widespread use

– Santosa and Symes (1986), and others in Geophysics (Claerbout)

– Donoho and Stark

• Sparse decompostions via Basis Pursuit

– Chen, Donoho, Saunders (1996)

– Donoho, Huo, Elad, Gribonval, Nielsen, Fuchs, Tropp (2001-2005)

• Novel sampling theorems

– Bresler and Feng (2002)

– Vetterli and others (2002-2004)

• Fast algorithms

– Gilbert, Strauss, et al. (2002-2005)
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An Interesting Problem

• Is it possible to reconstruct signals of scientific interest from a limited
number of measurements?

• Which measurements should we take?

• How should we reconstruct?
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Signal Recovery from Undersampled Data?

• Think of x ∈ RN as the coefficients of a signal f in an orthogonal basis Ψ

f(t) =
N∑

m=1

xmψm(t)

• Undersampled measurements

yk = 〈f, φ′
k〉, y = Φ′f,

or
yk = 〈x, φk〉, Φ = Φ′Ψ∗

• Recover via LP
min ‖s‖`1 Φs = y
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Compressible Signals

• In real life, signals of interest may not be sparse but compressible

• Compressible signal: f is well-approximated by a sparse signal.

• fB: best B-term expansion

fB(t) =
∑

B largest coeff’s

xmψm(t), fB = ΦxB

fB is a B-sparse signal

• Many signals are well approximated by a B-sparse signal

‖f − fB‖ = ‖x− xB‖

• This is what makes transform coders work (sparse coding)
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Compressible Signals I: Wavelets in 1D
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Compressible Signals II: Wavelets in 2D
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Sensing?
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Random Projections

yk = 〈f,Xk〉, Xk(t) i.i.d. N(0, 1),
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Reconstruction of Piecewise Polynomials, I

• Randomly select a few jump discontinuities

• Randomly select cubic polynomial in between jumps

• Observe about 500 random coefficients

• Minimize `1 norm of wavelet coefficients (170 nonzeros)
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Reconstruction of Piecewise Polynomials,II

• Randomly select 8 jump discontinuities

• Randomly select cubic polynomial in between jumps

• Observe about 200 Fourier coefficients at random
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Key Idea: Uncertainty Relation

W. Heisenberg, 1901-1976

Weyl-Heisenberg Uncertainty Principle

• f ’lives’ on an interval of length ∆t

• f̂ ’lives’ on an interval of length ∆ω

∆t · ∆ω ≥ 1
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Restricted Isometries

• ΦT columns of Φ corresponding to T , ΦT ∈ RK×|T |.

=y Φ

f

T

• Restricted isometry constants δS

(1 − δS) Id ≤ Φ∗
T ΦT ≤ (1 + δS) Id, ∀T, |T | ≤ S.

• Sparse subsets of column vectors are approximately orthonormal.

• Φ obeys a uniform uncertainty principle with oversampling factor λΦ if
δS ≤ 1/2 for S ≤ K/λΦ.

• Uniform because must hold for all T ’s.
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Why Do We Call This an Uncertainty Principle?

• Φ = FΩ, rows of the DFT isometry (corresponding to Ω)

• FΩT , columns of FΩ (corresponding to T )

• UUP

(1 − δS)
|Ω|
N

· ‖fT ‖2 ≤ ‖FΩT fT ‖2 ≤ (1 + δS)
|Ω|
N

· ‖fT ‖2

• Implications

– f supported on T , |T | ≤ S

– If UUP holds, then

(1 − δS)
|Ω|
N

≤ ‖f̂ · 1Ω‖2/‖f̂‖2 ≤ (1 + δS)
|Ω|
N
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Signal Recovery from Undersampled Data

min ‖s‖`1 Φs = Φx.

• Φ obeys a uniform uncertainty principle with oversampling factor λΦ

• Take B · λΦ measurements

• For all x ∈ RN , (nearly)

‖x] − x‖ ≤ 8 ‖x− xB‖

• Useful if oversampling factor is small
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Examples: Random Projections

• Gaussian ensemble: entries of Φ are i.i.d. N(0, 1/K)

λΦ . log[N/K]

• Binary ensemble: entries of Φ are i.i.d. ±1/
√
K

λΦ . log[N/K]

• Fourier ensemble: select K random Fourier coefficients (see also
Rudelson and Vershynin, 2005)

λΦ . log4N

All with overwhelming probability.
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Signal Recovery from Gausssian Measurements

min ‖s‖`1 Φs = Φx.

• The measurement vectors are i.i.d. white noise

• Take about B · log(N/B) measurements

• For all x ∈ RN , (nearly)

‖x] − x‖ ≤ 8 ‖x− xB‖

• See also Donoho, 2004.
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Big Surprise!
Want to sense an object for accurate reconstruction

• Strategy 1: Oracle tells exactly which coefficients are large (collect all N
wavelet coefficients, sort them and select the largest)

• Strategy 2: CollectB log[N/B] random coefficients and reconstruct by LP.

Surprising claim

• Same performance

• Performance is achieved by solving an LP.

See also Donoho, 2004.



33

Optimality

• Can you do with fewer than B log[N/B] for same accuracy?

• Simple answer: NO

• Connected with theory of Gelfand widths

• Connected with information theory (rate-distortion curve of compressible
signals)
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Compressive Sampling (CS)

CS suggests “the possibility of compressed data acquisition protocols which
perform as if it were possible to directly acquire just the important information

about the image of interest.”

Dennis Healy, DARPA
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Incoherence

• f =
∑

m xmψm(t)

• K randomly selected coefficients in basis another orthobasis Φ

yk = 〈f, φk〉 k ∈ Ω y = ΦΩf.

• Recover via
min ‖s‖`1 ΦΩΨ∗s = y

• Oversampling factor is about

µ2(logN)4

I.e. we need K & B · µ2(logN)4 to recover B largest terms.

• Mutual coherence

µ =
√
N max |〈φk, ψm〉|, 1 ≤ µ ≤

√
N
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Reconstruction from 100 Random Coefficients
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Reconstruction from Random Coefficients
Minimize TV subject to random coefficients + `1-norm of wavelet coefficients.
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Reconstruction from Random Coefficients
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original, 65k pixels wavelet 7207-term approx recovery from 20k proj

⇓ zoom ⇓ zoom
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original backprojection min TV

Ω ≈ 29% of samples ⇓ zoom ⇓ zoom
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Stable Recovery?

• In real applications, data are corrupted

• Better model: y = Φx+ e, where e may be stochastic, deterministic.

• Recall most of the singular values of Φ are zero

• Hopeless?
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Stable Recovery from Undersampled Data

min ‖s‖`1 ‖y − Φs‖`2 ≤ ‖e‖`2

With K = B · λΦ (nearly)

‖x− x]‖`2 ≤ 8 · (‖x− xB‖`2 + ‖e‖`2)

• No blow up!

• Reconstruction within the noise level

• Nicely degrades as noise level increases
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Geometric Intuition

• x] feasible ⇒ x] inside the diamond

• x] obeys the constraint ⇒ x] inside the slab (tube)
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Stable Recovery, I
Recovery of compressible signal (N = 1024): Gaussian white noise of
variance σ2 added to each of the K = 300 measurements.

σ 0.01 0.02 0.05 0.1 0.2 0.5

ε 0.19 0.37 0.93 1.87 3.74 9.34

‖x] − x0‖2 0.69 0.76 1.03 1.36 2.03 3.20

Original Recovered
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Stable Recovery, II
Image recovery from undersampled and contaminated measurements

• Gaussian white noise

• Round-off error

White noise Round-off

‖e‖`2 0.0789 0.0824

ε 0.0798 0.0827

‖α] − α0‖`2 0.1303 0.1323

‖α]
T V − α0‖`2 0.0837 0.0843
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(a) (b) (c)

• (b) Recovery via (T V ) from 25000 measurements corrupted with Gaussian noise.

• (c) Recovery via (T V ) from 25000 measurements corrupted by round-off error.

In both cases, the reconstruction error is less than the sum of the nonlinear
approximation and measurement errors.
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(a) (b) (c)

• (a) Noiseless measurements Ax0 of the Boats image.

• (b) Gaussian measurement error with σ = 5 · 10−4. The signal-to-noise ratio is
‖Ax0‖`2/‖e‖`2 = 4.5.

• (c) Round-off error. The signal-to-noise ratio is ‖Ax0‖`2/‖e‖`2 = 4.3.
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Take Home Message: Power of Random Sensing

• Wish to sense an object

• Take 3B − 4B random measurements

• Reconstruct by convex programming

• As accurate as the best B-term expansion in your favorite basis
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New Paradigm for Analog to Digital

• Measure K general linear functionals rather than the usual pixels

• Reconstruct with essentially the same resolution as that one would obtain
by measuring all the pixels.

• Impact for sensor design: incoherent analog sensors

• Pay-off: far fewer sensors than what is usually considered necessary.
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Rice Compressed Sensing Camera

Richard Baraniuk, Kevin Kelly, Yehia Massoud, Don Johnson
dsp.rice.edu/CS
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Conclusions

• New nonlinear sampling theory

• Many applications

– Sparse approximations with overcomplete representations

– Error-correction

– Statistical estimation

– Information theory

– Super-resolution

• Opportunities

– Biomedical imagery

– New A/D devices (Rice University, others)

– New paradigms for sensor networks (R. Nowak, others)



52

The Error Correction Problem

• We wish to transmit a “plaintext” x ∈ Rn reliably

• Frequently discussed approach: encoding, e.g. generate a “ciphertext”
Ax, where A ∈ Rm×n is a coding matrix

• Assume a fraction of the entries of Ax are corrupted → y

* * **
y

– Corruption is arbitrary

– We do not know which entries are corrupted

– We do not know how the corrupted entries are affected

• Is it possible to recover the plaintext exactly from the corrupted ciphertext?
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Decoding by Linear Programming
To recover x, solve

min
s∈Rn

‖y −As‖`1 .

Suppose A is Gaussian, then the input x is the unique solution provided the
fraction ρ of corrupted entries is not too large, ρ ≤ ρ∗

Donoho (2005) showed that for m = 4n, ρ∗ = 11%!
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Practical Performance, I

• Aij i.i.d. N(0, 1)

• x ∈ Rn

• Corruption: flip the sign of randomly selected entries
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Practical Performance, II
• Aij i.i.d. P(Aij = ±1) = 1/2

• x ∈ {0, 1}n

• Corruption: flip the sign of randomly selected entries

• Solve min ‖y −As‖`1 subject to 0 ≤ s ≤ 1, and round up.
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